Solution to Exercise 9.1.

Consider a gas of particles contained in a rectangular box

When a single particle hits the wall of the box labeled with area S = bc, it changes its momentum by an amount $2p_x$. The time interval between two consecutive hits is $2a/v_x$, and hence the average force on area S, produced by a single particle, is v_xp_xa , and the average pressure is $v_xp_x/(abc) = v_xp_x/V$, where V is box volume. Energy equipartition between three degrees of freedom gives the average value $<v_xp_x>=vp/3$, and hence the pressure produced by a single particle is vp/3V. If we have N particles with momentum p, the pressure is vpN/3V=vpn/3, where n=N/V is number density of particles with momentum p. When we have many particles described by a continuous distribution in momentum p, we replace n by n(p)dp and integrate to obtain

$$P = \frac{1}{3} \int_{0}^{\infty} vpn(p) dp.$$
$$P = \frac{1}{3} \int_{0}^{\infty} vpn(p) dpP = \frac{1}{3} \int_{0}^{\infty} vpn(p) dp.$$