Internal energy

Internal Energy

- Internal energy is all the energy of a system that is associated with its microscopic components
 - These components are its atoms and molecules
 - The system is viewed from a reference frame at rest with respect to the center of mass of the system

Internal Energy and Other Energies

- The kinetic energy due to its motion through space is **not** included
- Internal energy does include kinetic energies due to:
 - Random translational motion
 - Rotational motion
 - Vibrational motion
- Internal energy also includes potential energy between molecules

Water vibrations and rotations

http://www.lsbu.ac.uk/water/vibrat.html

Heat

- Heat is defined as the transfer of energy across the boundary of a system due to a temperature difference between the system and its surroundings
- The term *heat* will also be used to represent the *amount* of energy transferred by this method

Changing Internal Energy

- Both heat and work can change the internal energy of a system
- The internal energy can be changed even when no energy is transferred by heat, but just by work or other processes:
 - Example, compressing gas with a piston
 - Energy is transferred by work
 - Temperature of electrical conductors can be increased by passing electric current through them.
 Such processes are called *adiabatic*. In neither case does contact with a hotter or colder body play a
 - significant role.

Units of Heat

- Historically, the calorie was the unit used for heat
 - -One calorie is the amount of energy transfer necessary to raise the temperature of 1 g of water from 14.5°C to 15.5°C
 - The "Calorie" used for food is actually 1 kilocalorie

Mechanical Equivalent of Heat

- Joule established the equivalence between mechanical energy and internal energy
- His experimental setup is shown at right
- The loss in potential energy associated with the blocks equals the work done by the paddle wheel on the water

Mechanical Equivalent of Heat

- Joule found that it took approximately 4.18 J of mechanical energy to raise the temperature of water by 1.0 °C
- Later, more precise, measurements determined the amount of mechanical energy needed to raise the temperature of water from 14.5°C to 15.5°C
- 1 cal = 4.186 J

- This is known as the mechanical equivalent of heat

Heat Capacity

- The heat capacity, C, of a particular sample is defined as the amount of energy needed to raise the temperature of that sample by 1.0 °C
- If energy Q produces a change of temperature of ΔT , then

Q = C DT

Specific Heat

- Specific heat, c, is the heat capacity per unit mass
- If energy Q transfers to a sample of a substance of mass m and the temperature changes by ΔT , then the specific heat is

$$c \equiv \frac{Q}{m\,\Delta T}$$

Specific Heat

- The specific heat is essentially a measure of how insensitive a substance is to the addition of energy
 - The greater the substance's specific heat, the more energy that must be added to cause a particular temperature change
- The equation is often written in terms of Q :

Q = m c DT

Some Specific Heat Values

Substance	Specific heat c	
	J/kg · °C	cal/g·°C
Elemental solids		
Aluminum	900	0.215
Beryllium	1 830	0.436
Cadmium	230	0.055
Copper	387	0.092 4
Germanium	322	0.077
Gold	129	0.030 8
Iron	448	0.107
Lead	128	0.030 5
Silicon	703	0.168
Silver	234	0.056

More Specific Heat Values

Substance	Specific heat c	
	J/kg · °C	cal/g·°C
Other solids		
Brass	380	0.092
Glass	837	0.200
Ice $(-5^{\circ}C)$	2 090	0.50
Marble	860	0.21
Wood	1 700	0.41
Liquids		
Alcohol (ethyl)	2 400	0.58
Mercury	140	0.033
Water (15°C)	4 186	1.00
Gas		
Steam (100°C)	2 010	0.48

Sign Conventions

- If the temperature increases:
 - Q and ΔT are positive
 - Energy transfers into the system
- If the temperature decreases:
 - Q and ΔT are negative
 - Energy transfers out of the system

Specific Heat Varies With Temperature

- The specific heat varies with temperature
- The corrected equation is: $Q = m \int_{T_i}^{T_f} c \, dT$
- However, if the temperature intervals are not too large, the variation can be ignored and c can be treated as a constant
 - There is only about a 1% variation between 0° and 100°C

If heating is carried out under conditions of arbitrarily changing pressure and volume, *c* is found to be **different for each different "path"** or sequence of states.

Hence, it is apparent that specific heat becomes a uniquely definable property only if the path of the heating process is uniquely specified.

The method of mixtures is usually used under conditions of **constant** atmospheric **pressure**, and the specific heat so determined is denoted by the symbol c_P , "**specific heat at constant pressure**," and this is really what we have been talking about up to this point.

Another readily defined path is the **constant volume** process. Specific heats so determined are labeled c_v .

Specific Heat of Water

- Water has the highest specific heat of common materials
- This is responsible for many weather phenomena
 - Moderate temperatures near large bodies of water
 - Global wind systems
 - Land and sea breezes

Water vibrations and rotations

http://www.lsbu.ac.uk/water/vibrat.html

Calorimetry

- One technique for measuring specific heat involves heating a material, adding it to a sample of water, and recording the final temperature
- This technique is known as **calorimetry**
 - A calorimeter is a device in which this energy transfer takes place

Calorimetry

- The system of the sample and the water is isolated
- Conservation of energy requires that the amount of energy that leaves the sample equals the amount of energy that enters the water

-Conservation of Energy gives a mathematical expression of this:

$$Q_{\text{cold}} = -Q_{\text{hot}}$$

Calorimetry

- The negative sign in the equation is critical for consistency with the established sign convention
- Since each $Q = mc\Delta T$, c_{sample} can be found by: $c_s = \frac{m_w c_w (T_f - T_w)}{m_s (T_s - T_f)}$
 - Technically, the mass of the container should be included, but if $m_w >> m_{\text{container}}$ it can be neglected

Calorimetry, Example

• An ingot of metal is heated and then dropped into a beaker of water. The equilibrium temperature is measured

$$c_{s} = \frac{m_{w}c_{w}(T_{f} - T_{w})}{m_{s}(T_{s} - T_{f})}$$

= $\frac{(0.400 \text{ kg})(4186 \text{ J/kg} \cdot ^{\circ}\text{C})(22.4^{\circ}\text{C} - 20.0^{\circ}\text{C})}{(0.0500 \text{ kg})(200.0^{\circ}\text{C} - 22.4^{\circ}\text{C})}$
= 453 J/kg · °C