
Lecture 9 Evolution after the main sequence  

As a star evolves, gravitational contraction makes it hotter and denser. Until now, our 
analysis was limited by working with a simplest possible version of the equation of 
state  that of an ideal gas composed of classical particles (Lecture 3). We now 
need to introduce some generalizations of this simple description. 

9.1. Relativistic and quantum effects in the equation of state. 

Physically, the gas pressure is a measure of momentum exchange inside the gas. A 
general expression for the gas pressure, applicable for classical and relativistic 
particles, is 

                                 (9.1) 

where n(p)dp is the number density of particles with momentum between p and 

p+dp, and v is velocity. This equation can be derived in a way which is very similar 
to our derivation of the equation (3.11) in Lecture 3. 

--------------------------------------------------------- 

Exercise 9.1. Derive equation (9.1).    

--------------------------------------------------------- 

For an ideal gas of classical (i.e. non-relativistic) particles, the energy of a single 

particle is E=mv2/2=vp/2, and hence the internal energy density of the gas is 

 (nonrelativistic particles) (9.2) 

In the limiting case of extremely relativistic (ultrarelativistic) particles, we have 

E=cp, where c is speed of light, and hence 

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution9_1.htm�


 (ultrarelativistic particles) (9.3) 

One example of purely relativistic particles is photons. With radiation energy density 

uR=aT4, where a is Stefan radiation constant (equation 7.14 of Lecture 7), we get 
immediately the radiation pressure, i.e. the pressure from the photons: 

                                                 (9.4) 

At low temperature and high density, quantum-mechanical effects must be taken into 
account in the description of the gas. According to Pauli’s exclusion principle, at most 
two fermions (i.e., electrons or nucleons), with different spin, can occupy a given 

energy state. Each particular state occupies volume h3 in the 6-dimentional space of 

spatial coordinates and momentum components, where h is Planck’s constant. Thus, 

if p is the length of the 3-dimentional momentum vector, the number density of 

particles with momentum in the interval between p and p+dp is 

                       (9.5) 

where F(p) is the occupation probability number for the Fermi gas. 

Here we only consider a gas of electrons in the limit of zero temperature (limit of 
complete degeneracy). In this limit, all the quantum states ore occupied up to some 

maximum momentum pF, known as Fermi momentum, but no states with higher p 
are occupied: 



      (9.6) 

Integrating over all possible momenta, the electron number density is 

                       (9.7) 

Using equation (9.6), the energy density of the degenerate electrons is 

 

                                             (nonrelativistic)   (9.8) 



 

                                            (ultrarelativistic)   (9.9) 

and the pressure of the degenerate electrons  is 

 (nonrelativistic) (9.10) 

 (ultrarelativistic) (9.11) 

When chemical composition is described by the mass fractions of hydrogen X, helium 

Y and heavy elements Z=1-X-Y, the electron number density is approximately 



         (9.12) 

Using equation (9.7), we obtain 

 

                                              (nonrelativistic)  (9.13) 



 

                                            (ultrarelativistic)  (9.14) 

----------------------------------------------------------- 

Exercise 9.2. Verify equations (9.13, 9.14). 

------------------------------------------------------------ 

The equations (9.13, 9.14) represent a particularly simple form of the equation of 
state, since they are independent of the temperature. This is a consequence of 
applying the low-temperature limit (equation 9.6) in the derivations. One may wonder 
why the low-temperature limit is relevant for describing stellar interiors, which are 
very hot in our everyday standards. The answer is that it is essentially the high-
density requirement, which can also be viewed as a low-temperature requirement.  

The low-temperature limit is applicable when the Fermi momentum pF is much bigger 
than the classical momentum of the electron provided by its thermal motion, which is  

mev=(2meE)1/2=(3mekT)1/2, i.e. when 

                                           (9.15) 

Thus, a quantum gas is a cold gas, but the standard of “coldness” is set by the 
density of the gas; a temperature of a billion degrees can be cold in a very dense gas. 

The following diagram illustrates when the different pressures matter: 



  

Different stars occupy different portions of the plane:  

Solar-type stars  ideal gas throughout; 
Massive stars  significant contribution of radiation pressure; 
White dwarfs  nonrelativistic degeneracy pressure. 

Relativistic degeneracy implies an unstable equation of state, and hence there is no 
stable stars in that part of the plane. Indeed, according to equation (4.18) of Lecture 
4, the gravitational binding energy of the star is 

 

and for an extremely relativistic gas with internal energy density u=3p (equation 
9.3) we obtain  

 

where U is internal energy, and hence the total energy E is 

 

This result shows that an extremely relativistic system is marginally stable: it may 
expand or contract indefinitely without any change in the total energy. Hence a small 
change to the system may me sufficient to push it into instability. In addition to the 
ultra-relativistic degeneracy, another example of extremely relativistic systems is a 
star dominated by radiation pressure; such stars are also unstable. 



9.2. Red giants.  

When hydrogen is exhausted near the centre, the star is left with a core consisting of 
helium and a small amount of heavy elements. Initially the temperature of the core is 
far below the 108 K required for helium ignition, and hence there is no nuclear energy 
generation in the core. Although there may still be some release of energy due to 
gravitational contraction, the luminosity in the core is generally very low, and the 
core is almost isothermal. 

Surrounding the core is a region containing hydrogen where the temperature is still 
high enough for hydrogen burning to proceed. This region, which is known as a 
hydrogen shell source, provides the energy from which the luminosity of the star is 
derived. As the hydrogen is converted into helium in the shell source, the mass of the 
inert helium core increases. This leads to contraction of the core. As usual the 
contraction releases gravitational potential energy, part of which goes towards 
increasing the thermal energy of the core. As long as the core is not degenerate, the 
increase in thermal energy leads to an increase in temperature, up to the point where 
the temperature of the core is sufficiently high for helium burning to begin. Very 
roughly the process is then repeated: the star burns helium in the core (while still 
maintaining a hydrogen shell source) until helium is exhausted; the star then has a 
contracting core consisting of 12C and 16O, surrounded by a helium shell source and a 
hydrogen shell source; the contraction of the core may proceed up to the point where 
the temperature is high enough for carbon ignition; and so on.  

This rough sketch ignores a large amount of fascinating detail. Particularly important 
is the response of the observable properties of the star to the changes in the core: 
when the region inside a burning shell contracts, the region outside the shell expands. 
This response is behind the dominant observational signature of the post-main-
sequence evolution, which is rapid expansion of the envelope to form a red giant star.  

This phenomenon is undoubtedly confirmed by computations, but, despite of many 
efforts, has no simple and fully accepted explanation in simple physical terms. One 
good plausibility argument is the following. Suppose the core contraction at the end 
of hydrogen burning occurs on a time scale shorter than the Kelvin-Helmholtz time 
scale of the whole star. From energy conservation, we have the sum of gravitational 

and internal energy Ω+U=const during the core-contraction phase (very small 

energy loss to the outer space). From the virial theorem, we have Ω+2U=const   
(equation 4.19 of Lecture 4). But this is only possible when  Ω and U are conserved 
separately. The contraction of the stellar core makes the gravitational binding energy 

Ω more negative; this change has to be compensated by the expansion of the 
envelope.  

The subsequent evolution of the star depends crucially on its mass, as illustrated by 
the following diagram: 



 

9.3. White dwarfs 

For a star with contracting core consisting of 12C and 16O, surrounded by a helium and 
hydrogen shell source, one may now expect a repetition of the story, the core 
contraction leading to sufficiently high temperatures for carbon burning to set in. 

However, stars of mass smaller than about 8M never get that far. The carbon-
oxygen core becomes degenerate, and the pressure of the degenerate electrons 
prevents the core from further contraction before the temperature reaches the values 
required for carbon ignition. 

The subsequent evolution is complex, and not fully understood. Numerical 
computations indicate that a thermal instability develops in the helium shell source, 
causing thermal pulses where the star alternates between having a hydrogen and a 
helium shell source. At the same time the luminosity of the star increases greatly, as 
does its radius. Possibly as a result of the increase in radius and luminosity, the 
thermal pulses, or instabilities in the outer layers of the star, the star begins to loose 
mass at a fairly rapid rate. This process has been called a “superwind”  (however, the 
fact that it has been given a name does not mean that the underlying physical 
mechanism is understood). The result appears to be that the star eventually looses 
essentially all the material outside the degenerate carbon-oxygen core. The core is 
initially extremely hot and quite luminous, despite its small size. It illuminates the 
material which has been lost, and which for a few thousand years forms a fairly-well 
defined shell around the star, and causes it to shine as a planetary nebulae. 

 



Subsequently the material is dispersed in the interstellar medium; the degenerate 
core continues to shine through loss of its thermal energy. It cools gradually, reaching 
an effective temperature of about 4000 K in about 1010 years. These objects are called 

white dwarfs. Their masses are typically between 0.5M and  1.4M . 

As a white dwarf cools, the pressure generated by the thermal motion of the ions will 
become less important, and eventually a pressure due to degenerate electrons will 
provide the bulk of the pressure needed to support the star. 

We now assume for a while that the star is supported by the pressure of a gas of non-
relativistic degenerate electrons (equation 9.13). The pressure and density profiles in 

such a star are described by a polytropic model (P=Kργ, equation 5.1 of Lecture 5) 

with γ=5/3 and polytropic index n=1/(γ-1)=3/2 (equation 5.4). Using 
equation (5.14) of Lecture 5, we obtain immediately the mass-radius relation 

                                                 (9.16) 

which tells us that more massive the white dwarf is, smaller its radius. The constant 

of proportionality in this relation depends on the composition; for a star with X=0, 

                                     (9.17) 

In many white dwarfs the electron gas is relativistic in the central part of the star, 
while it is non-relativistic further out. Indeed, the degenerate electrons become 

relativistic when Fermi momentum pF is large compared with mec, i.e. when the 

number density of the electrons (equation 9.7) is large compared with (mec/h)3. 

If we now consider an opposite limit when the entire white dwarf is filled with 
extremely relativistic degenerate electrons, the equation of state (9.13) shall be 

replaced with (9.14), which corresponds to a polytrope with γ=4/3,  n=3. For 

polytropic index 3, the equation (5.14) predicts a unique value of mass M, which 

does not depend on radius R, being only governed by the constant K in the 

polytropic equation of state. This mass is known as Chandrasekhar mass MCh. The 

constant K in the equation of state depends upon the composition; for a white dwarf 

with X=0, we obtain 



                                         (9.18)   

According to our discussion earlier in this Lecture, an extremely relativistic system is 
marginally stable. It follows that the Chandrasekhar mass is the maximum mass 

possible for a white dwarf star. When the mass reaches  MCh, the star collapses and 
new physics  must be sought to explain what happens next. For the moment, the only 
firm conclusion we draw is that a degenerate electron gas cannot support a star with 
mass larger than the Chandrasekhar mass.                                

9.4. Supernova explosion. 

Stars with initial mass greater than about 8M are expected to evolve through all 
the stages of nuclear burning. The process begins with hydrojen burning at about 
2×107 K and proceeds at successfully high temperatures through helium, carbon, 
neon, oxygen and silicon burning. Silicon burning at about 3×109 K leads to a star 
with a central core of iron surrounded by concentric shells containing silicon, oxygen, 
neon, carbon, helium and hydrogen. Because energy cannot be released by the 
thermonuclear fusion of iron (in normal circumstances the most stable form of nuclear 
matter consists of nuclei near 56Fe in the periodic table), the central core contracts. 
Initially, this contraction can be controlled by the pressure of the dense gas of 
degenerate electrons in the core. But as silicon burning in the surrounding shell 
deposits more iron onto the central core, the degenerate electrons in the core become 
increasingly relativistic. When the core mass reaches the Chandrasekhar limit of 

about 1.4M , the electrons become ultra-relativistic and they are no longer able 
to support the core. At this stage the stellar core is on the brink of a catastrophe. 
What follows is an uncontrolled collapse of the stellar core. 

To understand the onset of the collapse, we note that when a body contracts under 
gravity, gravitational energy is converted into internal energy. If this leads to the 
activation of exothermic nuclear fusion, the internal kinetic energy increases, the 
pressure rises and the contraction is opposed. The opposite happens if an energy-
absorbing process is activated: kinetic energy is absorbed, the effectiveness of the 
pressure is diminished and gravitational contraction turns into gravitational collapse. 

There are two energy-absorbing processes which could drive the iron core of a star 
into an uncontrollable collapse. They are the photodisintegration of atomic nuclei and 
the capture of electrons via inverse beta decay. During photodisintegration, in 
reactions like 

 

kinetic energy is used to unbind atomic nuclei; and during inverse beta decay 



 

or in reactions like 

 

(the conversion of protons to neutrons is often called neutronization) kinetic energy of 
degenerate electrons is converted into the kinetic energy of electron neutrinos which 
escape from the core. These energy-absorbing processes are so effective that the 
collapse of the stellar core is almost unopposed. Indeed, the core can collapse almost 
freely under gravity, on a free-fall time scale (equation 1.3 of Lecture 1) which is 
remarkably short, of the order of 1 millisecond. 

The collapse is rapid and almost unopposed until a density comparable to the density 
of nuclear matter is reached. The nuclear forces (and neutron degeneracy) are 
expected to resist further compression and bring the collapse to a halt. The core is 
expected to rebound strongly and set up a shock wave that travels through the 
material that is falling towards the center. Theoretical calculations suggest that this 
shock wave may be able to reverse the inward fall of stellar material surrounding the 
core and produce an outward expulsion, a supernova. 

 

Supernovae are very energetic explosions: the observed kinetic energy of the debris 
is typically 1044 J and the optical energy output, during the year following the 
explosion, is of the order of 1042 J.  

The mixture of products of thermonuclear reactions accumulated around the core is 
ejected into the interstellar medium and hence enriches is by heavy elements. 

The collapse of the iron core of a massive star is the most likely cause of a so-called 
Type II supernova (most of Type I supernovae are thought to arise from a 
thermonuclear detonation of a carbon-oxygen white dwarf which can increase its 
mass by drawing mass from a nearby companion star). The collapse is expected to 



leave a core residue, either a neutron star or an overweight neutron star that 
collapses to form a black hole.   

9.5. Neutron stars.   

A neutron star is born as a hot residue of the collapsed core of a massive star. The 
typical internal temperature is initially between 1011 K and 1012 K. It rapidly cools by 
neutrino emission and is expected to reach a temperature of the order of 109 K in a 
day and 108 K in a 100 years. These are high temperatures according to terrestrial 
and solar standards, but they are low when compared to the standards set by the 
high densities in the matter inside a neutron star. The electrons, photons and above 
all the neutrons, which appear to be the dominant constituent of neutron stars, are 
degenerate and occupy the lowest possible states consistent with the Pauli’s exclusion 
principle. The characteristic size of a neutron star is about 17 km, which is about 
2000 times smaller than the typical size of a white dwarf given by equation (9.17). 

Observationally, neutron stars have been detected in the form of the pulsars, which 
emit pulses at very regular intervals, with periods between a few milliseconds and a 
few seconds. These are most often observed in radio emission. The interpretation of 
the observations is that the pulses originate from a rotating neutron star, which is 
predominantly radiating in specific directions; a pulse is observed when the beam of 
radiation sweeps past the observer. 

 

To a first approximation, neutrons play the same supporting role in a neutron star as 
electrons in a white dwarf. They can also fail to support in similar ways. Just as 
degenerate electrons are unable to support a white dwarf with a mass above a critical 
limit, the Chandrasekhar limit, degenerate neutrons are unable to support a neutron 
star with a mass above a certain value. 

The physics underlying the Chandrasekhar limit is clear-cut. As the mass of the white 
dwarf approaches the limit, the central density increases and the degenerate 
electrons become increasingly relativistic. At the Chandrasekhar limit, the electrons 
are ultra-relativistic, the density approaches “infinity” and the star collapses. A similar 
phenomenon involving neutrons is expected in a neutron star, but there are a number 
of important differences. First, the interactions between neutrons are very important 
at the high densities found in a neutron star. Second, the gravitational fields are very 
strong and Einstein’s theory, not Newton’s, should be used to describe the equilibrium 



of a neutron star under gravity. However, these important differences do not alter the 
fundamental result that there is a maximum mass for a neutron star. Their main 
effect is to make the calculation of this maximum mass very difficult. 

The first calculation of this kind was by Oppenheimer and Volkoff in 1939. They found 

that the maximum mass of a star composed of non-interacting neutrons is 0.7M 
 . Modern estimates range from approximately 1.5M to 3M . The 

uncertainty in the value reflects the fact that the equations of state for extremely 
dense matter are not well-known. 

9.6. Black holes.  

In stars with initial mass bigger than about 20M , the collapsing core is too 
massive to end its life as a neutron star. As the collapse proceeds, the gravitational 
field becomes stronger and stronger, and the internal pressure becomes larger and 
larger. But the source of the gravitational field in general relativity is the energy 
density and the pressure. Hence the increase in pressure accelerates the final stages 
of collapse. According to general relativity, the star enters a region of space-time 
called a black hole; it is more accurate to describe a black hole in terms of a 
distortion of the unified concept of space-time. In general relativity, gravity is not a 
force, but a distortion of the geometrical properties of space-time due to the presence 
of matter and radiation. The Sun only produces a slight “dent” in space-time, but a 
collapsed core of a massive star can produce a “hole”. Nothing can escape from this 
hole because there are no outward paths in this distorted region of space-time; every 
path is towards the center of the hole. It is a hole of no return. 

The most important property of a black hole is the existence of an event horizon at 
radius 

                                                 (9.19) 

Known as Schwarzschild radius. For a collapsed mass equal to 10M   the 
Schwarzschild radius is 30 km. The Schwarzschild radius marks the boundary of the 
one-way surface of the black hole. This surface is not made of anything. It encloses 
an unobservable region of space in which all motion is towards the center. No matter, 
radiation, or information can propagate outwards through this surface. A black hole is 
formed when the radius of a collapsing star reaches the Schwarzschild radius. 

Any method for detecting a black hole depends on observing the effects of its intense 
gravitational field. Observations of some compact X-ray sources indicate the presence 
of intense gravitational fields due to compact objects which are too massive to be 
neutron stars. These objects, by default, are thought to be black holes. 

Gravity is the driving force for stellar evolution. It leads to the formation of a star and 
to temperatures which make thermonuclear fusion possible. The energy released by 
fusion only serves to delay the gravitational contraction of the matter inside the star. 
The endpoint may be a white dwarf or a neutron star, stars in which cold matter 
resists the force of gravity. An alternative endpoint is a black hole in which gravity is 



completely triumphant. The outcome is neat and tidy  nothing is left of the 
collapsed matter apart from an intense gravitational field. 

 


